A Novel Sigmoid-Function-Based Adaptive Weighted Particle Swarm Optimizer
نویسندگان
چکیده
In this paper, a novel particle swarm optimization (PSO) algorithm is put forward where sigmoid-function-based weighting strategy developed to adaptively adjust the acceleration coefficients. The newly proposed adaptive takes into account both distances from global best position and its personal position, thereby having distinguishing feature of enhancing convergence rate. Inspired by activation function neural networks, new employed update coefficients using sigmoid function. search capability PSO (AWPSO) comprehensively evaluated via eight well-known benchmark functions including unimodal multimodal cases. experimental results demonstrate that designed AWPSO substantially improves rate optimizer also outperforms some currently popular algorithms.
منابع مشابه
The landscape adaptive particle swarm optimizer
Several modified particle swarm optimizers are proposed in this paper. In DVPSO, a distribution vector is used in the update of velocity. This vector is adjusted automatically according to the distribution of particles in each dimension. In COPSO, the probabilistic use of a ‘crossing over’ update is introduced to escape from local minima. The landscape adaptive particle swarm optimizer (LAPSO) ...
متن کاملA Parallel Particle Swarm Optimizer
1. Abstract Time requirements for the solving of complex large-scale engineering problems can be substantially reduced by using parallel computation. Motivated by a computationally demanding biomechanical system identification problem, we introduce a parallel implementation of a stochastic population based global optimizer, the Particle Swarm Algorithm as a means of obtaining increased computat...
متن کاملRobust Particle Swarm Optimizer based on Chemomimicry
Particle swarm optimizers (PSO) were first introduced by Kennedy and Eberhart as stochastic algorithms which seek optimal solutions to functions through the use of swarm intelligence [1]. The main theme of PSO is that many particles are allowed to explore a function space. As each particle relocates it inputs its coordinates into the objective function for evaluation. Particles are assigned dir...
متن کاملA novel particle swarm optimizer hybridized with extremal optimization
Particle swarm optimization (PSO) has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, PSO has premature convergence, especially in complex multimodal functions. Extremal Optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide varie...
متن کاملAn Improved Particle Swarm Optimizer Based on a Novel Class of Fast and Efficient Learning Factors Strategies
The particle swarm optimizer (PSO) is a population-based metaheuristic optimization method that can be applied to a wide range of problems but it has the drawbacks like it easily falls into local optima and suffers from slow convergence in the later stages. In order to solve these problems, improved PSO (IPSO) variants, have been proposed. To bring about a balance between the exploration and ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE transactions on cybernetics
سال: 2021
ISSN: ['2168-2275', '2168-2267']
DOI: https://doi.org/10.1109/tcyb.2019.2925015